4.8 Article

Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes

Journal

CARBON
Volume 95, Issue -, Pages 166-180

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2015.07.092

Keywords

-

Funding

  1. German Science Foundation (DFG) [WA2323/6-1]

Ask authors/readers for more resources

A new, modified molecular structural mechanics model for the determination of the elastic properties of carbon nanotubes is presented. It is designed specifically to overcome drawbacks in existing molecular structural mechanics models, which are not consistent with their underlying chemical force fields in terms of energy. As a result, modifications are motivated, developed and implemented in order to create a new, energy consistent molecular structural mechanics model. Hence, the new model leads to a better prediction of the material parameters for single wall carbon nanotubes, while the simple applicability of the approach is maintained. The results calculated for the elastic constants (Young's modulus, Poisson ratio) of armchair and zig-zag CNTs are given and discussed. Both elastic constants were found to be dependent on the chirality as well as on the carbon nanotube diameter. An asymptotic value of approximately 800 GPa was obtained for the Young's modulus and a value of approximately 0.28 for the Poisson ratio. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available