4.7 Review

Recent Progress on Modeling Land Emission and Retrieving Soil Moisture on the Tibetan Plateau Based on L-Band Passive Microwave Remote Sensing

Journal

REMOTE SENSING
Volume 14, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/rs14174191

Keywords

L-band; passive microwave RS; land emission model; SM retrieval; TP

Funding

  1. National Natural Science Foundation of China [42030509, 41971308, 41901317]

Ask authors/readers for more resources

This paper reviews the research progress and applications of L-band passive microwave remote sensing on the Tibetan Plateau, highlighting existing problems and proposing relevant suggestions for improvement.
L-band passive microwave remote sensing (RS) is an important tool for monitoring global soil moisture (SM) and freeze/thaw state. In recent years, progress has been made in its in-depth application and development in the Tibetan Plateau (TP) which has a complex natural environment. This paper systematically reviews and summarizes the research progress and the main applications of L-band passive microwave RS observations and associated SM retrievals on the TP. The progress of observing and simulating L-band emission based on ground-, aircraft-based and spaceborne platforms, developing regional-scale SM observation networks, as well as validating satellite-based SM products and developing SM retrieval algorithms are reviewed. On this basis, current problems of L-band emission simulation and SM retrieval on the TP are outlined, such as the fact that current evaluations of SM products are limited to a short-term period, and evaluation and improvement of the forward land emission model and SM retrieval algorithm are limited to the site or grid scale. Accordingly, relevant suggestions and prospects for addressing the abovementioned existing problems are finally put forward. For future work, we suggest (i) sorting out the in situ observations and conducting long-term trend evaluation and analysis of current L-band SM products, (ii) extending current progress made at the site/grid scale to improve the L-band emission simulation and SM retrieval algorithms and products for both frozen and thawed ground at the plateau scale, and (iii) enhancing the application of L-band satellite-based SM products on the TP by implementing methods such as data assimilation to improve the understanding of plateau-scale water cycle and energy balance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available