4.7 Article

Wetting Characteristics of Nanosilica-Poly (acrylic acid) Transparent Anti-Fog Coatings

Journal

POLYMERS
Volume 14, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/polym14214663

Keywords

superhydrophilicity; anti-fogging; surface wetting; nanocomposite coating

Funding

  1. US Army Combat Capabilities Development Command Soldier Center [W911QY-18-2-0006]

Ask authors/readers for more resources

The effect of particle loading on the wetting properties of coatings was investigated in this study. It was found that an increase in particle loading improved the wetting properties and resulted in superhydrophilic behavior. The surface chemistry and topography were identified as the key factors determining the wetting properties. The coatings also showed good adhesion and anti-fogging behavior. Additionally, the transparency of the coatings was greatly improved with an increase in particle loading.
The effect of particle loading on the wetting properties of coatings was investigated by modifying a coating formulation based on hydrophilic silica nanoparticles and poly (acrylic acid) (PAA). Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Wettability was improved with an increase in particle loading. The resulting coatings showed superhydrophilic (SH) behavior when the particle loading was above 53 vol. %. No new peaks were detected by attenuated total reflection (ATR-FTIR). The surface topography of the coatings was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presence of hydrophilic functional groups and nano-scale roughness were found to be responsible for superhydrophilic behavior. The surface chemistry was found to be a primary factor determining the wetting properties of the coatings. Adhesion of the coatings to the substrate was tested by tape test and found to be durable. The antifogging properties of the coatings were evaluated by exposing the films under different environmental conditions. The SH coatings showed anti-fogging behavior. The transparency of the coatings was significantly improved with the increase in particle loading. The coatings showed good transparency (>85% transmission) when the particle loading was above 84 vol. %.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available