4.6 Article

The Vibrio cholerae Seventh Pandemic Islands act in tandem to defend against a circulating phage

Journal

PLOS GENETICS
Volume 18, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1010250

Keywords

-

Funding

  1. National Institute of Allergy and Infectious Diseases (NIAID) [R01AI121337]
  2. National Institutes of Health [T32GM007310]

Ask authors/readers for more resources

This study isolated a circulating phage from a cholera patient stool sample and demonstrated that elements in both VSP-I and VSP-II inhibited the propagation of this phage in its native host, providing direct evidence for the role of these genomic islands in phage defense. Furthermore, the research showed that these defense systems are regulated by quorum sensing and are only active at certain cell densities.
The current circulating pandemic El Tor biotype of Vibrio cholerae has persisted for over sixty years and is characterized by its acquisition of two unique genomic islands called the Vibrio Seventh Pandemic Islands 1 and 2 (VSP-I and VSP-II). However, the functions of most of the genes on VSP-I and VSP-II are unknown and the advantages realized by El Tor through these two islands are not clear. Recent studies have broadly implicated these two mobile genetic elements with phage defense. Still, protection against phage infection through these islands has not been observed directly in any V. cholerae El Tor biotype. Here we report the isolation of a circulating phage from a cholera patient stool sample and demonstrate that propagation of this phage in its native host is inhibited by elements in both VSP-I and VSP-II, providing direct evidence for the role of these genomic islands in phage defense. Moreover, we show that these defense systems are regulated by quorum sensing and active only at certain cell densities. Finally, we have isolated a naturally occurring phage variant that is resistant to the defense conferred by the VSP islands, illustrating the countermeasures used by phages to evade these defense mechanisms. Together, this work demonstrates a functional role for the VSPs in V. cholerae and highlights the key regulatory and mechanistic insights that can be gained by studying anti-phage systems in their native contexts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available