4.6 Article

Measuring impact of vaccination among wildlife: The case of bait vaccine campaigns for classical swine fever epidemic among wild boar in Japan

Journal

PLOS COMPUTATIONAL BIOLOGY
Volume 18, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1010510

Keywords

-

Funding

  1. Regulatory research projects for food safety, animal health, and plant protection - Ministry of Agriculture, Forestry and Fisheries of Japan [JPJ008617, JP20319390]
  2. JSPS KAKENHI [19KK0242, 21K17250]

Ask authors/readers for more resources

Understanding the impact of bait vaccination in controlling infectious diseases in wildlife is essential. This study developed a model to estimate the impact of bait vaccination against classical swine fever (CSF) in Japanese wild boar. The model estimated a 12.1% increase in antibody prevalence due to vaccination in 2019 and calculated the amount of vaccine distribution required for CSF elimination. The findings highlight the importance of bait vaccination and provide insights for disease control strategies.
Understanding the impact of vaccination in a host population is essential to control infectious diseases. However, the impact of bait vaccination against wildlife diseases is difficult to evaluate. The vaccination history of host animals is generally not observable in wildlife, and it is difficult to distinguish immunity by vaccination from that caused by disease infection. For these reasons, the impact of bait vaccination against classical swine fever (CSF) in wild boar inhabiting Japan has not been evaluated accurately. In this study, we aimed to estimate the impact of the bait vaccination campaign by modelling the dynamics of CSF and the vaccination process among a Japanese wild boar population. The model was designed to estimate the impact of bait vaccination despite lack of data regarding the demography and movement of wild boar. Using our model, we solved the theoretical relationship between the impact of vaccination, the time-series change in the proportion of infected wild boar, and that of immunised wild boar. Using this derived relationship, the increase in antibody prevalence against CSF because of vaccine campaigns in 2019 was estimated to be 12.1 percentage points (95% confidence interval: 7.8-16.5). Referring to previous reports on the basic reproduction number (R-0) of CSF in wild boar living outside Japan, the amount of vaccine distribution required for CSF elimination by reducing the effective reproduction number under unity was also estimated. An approximate 1.6 (when R-0 = 1.5, target vaccination coverage is 33.3% of total population) to 2.9 (when R-0 = 2.5, target vaccination coverage is 60.0% of total population) times larger amount of vaccine distribution would be required than the total amount of vaccine distribution in four vaccination campaigns in 2019. Author summary Vaccination of wildlife is important to control infectious diseases in animals. However, the impact of common vaccination of wildlife, bait vaccination, is difficult to evaluate owing to difficulty in obtaining the vaccination history at the individual level. Mathematical modelling can estimate the impact of vaccination; however, the demography and movement of hosts are required to describe disease dynamics. In this study, we aimed to estimate the impact of bait vaccination by modelling the dynamics of classical swine fever (CSF) and the vaccination among Japanese wild boar. The model was designed to estimate the impact of bait vaccination despite lack of data regarding the demography and movement of wild boar. Using our model, the increase in antibody prevalence because of vaccination in 2019 was estimated to be 12 percentage points. Furthermore, we estimated the amount of vaccine distribution required for CSF elimination by reducing the effective reproduction number under unity. Referring to previous reports on the basic reproduction number of CSF in wild boar living outside Japan, it was estimated that an approximate 1.6 to 2.9 times larger amount of vaccine distribution would be required than the total amount of vaccine distribution in four vaccination campaigns in 2019.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available