4.8 Article

Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture

Journal

CARBON
Volume 93, Issue -, Pages 68-80

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2015.05.017

Keywords

-

Funding

  1. Natural Sciences and Engineering Council of Canada (NSERC)

Ask authors/readers for more resources

A series of strictly microporous nitrogen-doped activated carbons were used to delineate the role of nitrogen and micropores in CO2 adsorption. A wide range of activation conditions, including the KOH to carbon weight ratio (1-2), temperature (550-700 degrees C) and time (1-2 h) were explored to generate activated carbons with adjustable pore sizes and nitrogen contents. The materials were characterized using X-ray diffraction, elemental analysis, X-ray photoelectron spectroscopy and Ar, N-2, H-2 adsorption/desorption at -196 degrees C. CO2 uptake, heat of adsorption, and CO2/N-2 selectivity were determined from the adsorption/desorption isotherms measured at different temperatures. The optimized materials exhibited unusually high nitrogen content (22.3 wt%) and high surface area (1317 m(2)/g), in addition to large pore volume (0.27 cm(3)/g) comprised of ultra-micropores less than 0.7 nm in diameter. This material showed an extraordinary CO2 uptake of 23.7 wt% (5.39 mmol/g) at 25 degrees C and 1 bar, one of the highest uptakes reported so far for any activated carbon. Its CO2/N-2 selectivity at 25 degrees C was 237 and 62 at 0.01 and 1 bar, respectively. The results led to the conclusion that both nitrogen content and ultra-micropores played important roles for CO2 adsorption, the latter being predominant. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available