4.8 Article

High-Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 26, Issue 1, Pages 91-100

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201503698

Keywords

-

Funding

  1. Australian Research Council (ARC) [DP140100170]

Ask authors/readers for more resources

Planar 2D materials are possibly the ideal channel candidates for future field effect transistors (FETs), due to their unique electronic properties. However, the performance of FETs based on 2D materials is yet to exceed those of conventional silicon based devices. Here, a 2D channel thin film made from liquid phase exfoliated molybdenum oxide nanoflake inks with highly controllable substoichiometric levels is presented. The ability to induce oxygen vacancies by solar light irradiation in an aqueous environment allows the tuning of electronic properties in 2D substoichiometric molybdenum oxides (MoO3-x). The highest mobility is found to be approximate to 600 cm(2) V-1 s(-1) with an estimated free electron concentration of approximate to 1.6 x 10(21) cm(-3) and an optimal I-On/I-Off ratio of >10(5) for the FETs made of 2D flakes irradiated for 30 min (x = 0.042). These values are significant and represent a real opportunity to realize the next generation of tunable electronic devices using electronic inks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available