4.3 Article

Pan-Genome-Assisted Computational Design of a Multi-Epitopes-Based Vaccine Candidate against Helicobacter cinaedi

Publisher

MDPI
DOI: 10.3390/ijerph191811579

Keywords

Helicobacter cinaedi; pan-genome; vaccine candidates; epitopes; multi-epitopes' vaccine; docking; molecular dynamics simulation

Funding

  1. Deanship of Scientific Research at Majmaah University [R-2022-279]

Ask authors/readers for more resources

Helicobacter cinaedi is a Gram-negative bacterium that can cause gastroenteritis, cellulitis, and bacteremia. In this study, a pan-genome analysis was conducted to identify potential vaccine targets. Four promising vaccine candidates were identified and epitopes were mapped. A multi-epitopes vaccine construct was designed and shown to stimulate strong immune responses and production of interferon and cytokines.
Helicobacter cinaedi is a Gram-negative bacterium from the family Helicobacteraceae and genus Helicobacter. The pathogen is a causative agent of gastroenteritis, cellulitis, and bacteremia. The increasing antibiotic resistance pattern of the pathogen prompts the efforts to develop a vaccine to prevent dissemination of the bacteria and stop the spread of antibiotic resistance (AR) determinants. Herein, a pan-genome analysis of the pathogen strains was performed to shed light on its core genome and its exploration for potential vaccine targets. In total, four vaccine candidates (TonB dependent receptor, flagellar hook protein FlgE, Hcp family type VI secretion system effector, flagellar motor protein MotB) were identified as promising vaccine candidates and subsequently subjected to an epitopes' mapping phase. These vaccine candidates are part of the pathogen core genome: they are essential, localized at the pathogen surface, and are antigenic. Immunoinformatics was further applied on the selected vaccine proteins to predict potential antigenic, non-allergic, non-toxic, virulent, and DRB*0101 epitopes. The selected epitopes were then fused using linkers to structure a multi-epitopes' vaccine construct. Molecular docking simulations were conducted to determine a designed vaccine binding stability with TLR5 innate immune receptor. Further, binding free energy by MMGB/PBSA and WaterSwap was employed to examine atomic level interaction energies. The designed vaccine also stimulated strong humoral and cellular immune responses as well as interferon and cytokines' production. In a nutshell, the designed vaccine is promising in terms of immune responses' stimulation and could be an ideal candidate for experimental analysis due to favorable physicochemical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available