4.7 Article

Towards a digital twin for supporting multi-agency incident management in a smart city

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-20178-8

Keywords

-

Funding

  1. United Kingdom Research and Innovation's (UKRI) Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Geospatial Systems [EP/S023577/1]

Ask authors/readers for more resources

Cost-effective on-demand computing resources can help process large datasets generated from smart cities, but challenges such as data heterogeneity, lack of real-time information, and communication inefficiency need to be addressed. By using a systems engineering approach, we identified the challenges faced by stakeholders and developed a prototype to support their incident response.
Cost-effective on-demand computing resources can help to process the increasing number of large, diverse datasets generated from smart internet-enabled technology, such as sensors, CCTV cameras, and mobile devices, with high temporal resolution. Category 1 emergency services (Ambulance, Fire and Rescue, and Police) can benefit from access to (near) real-time traffic- and weather data to coordinate multiple services, such as reassessing a route on the transport network affected by flooding or road incidents. However, there is a tendency not to utilise available smart city data sources, due to the heterogeneous data landscape, lack of real-time information, and communication inefficiencies. Using a systems engineering approach, we identify the current challenges faced by stakeholders involved in incident response and formulate future requirements for an improved system. Based on these initial findings, we develop a use case using Microsoft Azure cloud computing technology for analytical functionalities that can better support stakeholders in their response to an incident. Our prototype allows stakeholders to view available resources, send automatic updates and integrate location-based real-time weather and traffic data. We anticipate our study will provide a foundation for the future design of a data ontology for multi-agency incident response in smart cities of the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available