4.6 Article

A Simple Method for Preparation of Highly Conductive Nitrogen/Phosphorus-Doped Carbon Nanofiber Films

Journal

MATERIALS
Volume 15, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/ma15175955

Keywords

carbon fiber films; heterogeneous elements; electrospinning; electrical conductivity

Funding

  1. Chinese Academy of Sciences
  2. National Natural Science Foundation of China [52075526]
  3. National Key Research and Development Program [2018YFB1107500]
  4. Key R&D Projects of Zhejiang Province [2022C011236]
  5. Fundamental Research Funds for the Central Universities [DUT22LAB605]
  6. Ningbo 3315 Plan Innovation Team [2017A-28-C]

Ask authors/readers for more resources

Heteroatom-doped carbon nanomaterials with high conductivity were successfully synthesized using 2-(4-aminophenyl)-5-aminobenzimidazole as the diamine monomer and phosphoric acid as the dopant. The doped carbon nanomaterials showed improved conductivity compared to the undoped ones.
Heteroatom-doped conductive carbon nanomaterials are promising for energy and catalysis applications, but there are few reports on increasing their heteroatom doping content and conductivity simultaneously. In this manuscript, we use 2-(4-aminophenyl)-5-aminobenzimidazole as the diamine monomer to prepare polyamic acid with asymmetric structural units doped with phosphoric acid (PA) and polyacrylonitrile (PAN) as innovative composite precursors, which are then electrospun into nanofiber films. After stabilization and carbonization, the electrospun fibers are converted into N/P co-doped electrospun carbon nanofiber films (ECNFs) with high heteroatom content, including 4.33% N and 0.98% P. The morphology, structure, and conductivity of ECNFs were systematically characterized. The ECNFs doped with 15 wt.% PA exhibited conductivity that was 47.3% higher than that of the ECNFs undoped with PA, but the BET surface area decreased by 23%. The doped PA in the precursor nanofibers participated in the cyclization of PAN during thermal stabilization, as indicated by infrared spectroscopy and thermogravimetric analysis results. X-ray diffraction and Raman results indicate that a moderate amount of PA doping facilitated the formation of ordered graphitic crystallite structures during carbonization and improved the conductivity of ECNFs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available