4.6 Article

Kinetics of Magnesiothermic Reduction of Natural Quartz

Journal

MATERIALS
Volume 15, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/ma15196535

Keywords

magnesiothermic reduction; magnesium silicide; silicon; reaction rate; Rietveld refinement

Funding

  1. Research Centre for Sustainable Solar Cell Technology (FME SuSolTech)
  2. Norwegian Research Council [257639]

Ask authors/readers for more resources

This study investigated the kinetics of natural quartz reduction by Mg to produce Si or Mg2Si. The results showed that the reaction rate and product distribution were greatly influenced by the reaction temperature and the ratio of Mg to SiO2.
In this work, the kinetics of natural quartz reduction by Mg to produce either Si or Mg2Si was studied through quantitative phase analysis. Reduction reaction experiments were performed at various temperatures, reaction times and Mg to SiO2 mole ratios of 2 and 4. Rietveld refinement of X-ray diffraction patterns was used to obtain phase distributions in the reacted samples. SEM and EPMA examinations were performed to evaluate the microstructural change during reduction. The results indicated that the reduction reaction rate was slower at a mole ratio of 2 than 4 at the same temperature, as illustrated by the total amount of Si formed (the percent of Si that is reduced to either Si or Mg2Si to total amount of Si) being 59% and 75%, respectively, after 240 min reaction time for mole ratios of 2 and 4. At the mole ratio of 4, the reaction rate was strongly dependent on the reaction temperature, where SiO2 was completely reduced after 20 min at 1273 K. At the lower temperatures of 1173 and 1073 K, total Si formed was 75% and 39%, respectively, after 240 min reaction time. The results of the current work show that Mg2Si can be produced through the magnesiothermic reduction of natural quartz with high yield. The obtained Mg2Si can be processed further to produce silane gas as a precursor to high purity Si. The combination of these two processes offers the potential for a more direct and low carbon method to produce Si with high purity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available