4.6 Article

Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites

Journal

MATERIALS
Volume 15, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/ma15217568

Keywords

polypropylene; short carbon fiber; titanium dioxide; nanocomposite; mechanical properties

Funding

  1. Prince Sultan University

Ask authors/readers for more resources

This work investigated the mechanical properties of reinforced polypropylene composites, showing that PP23 had better adhesion and dispersion with the fillers, resulting in significant improvement in mechanical properties, especially in PP/GNP composites.
In this work, mechanical properties of reinforced polypropylene composites were studied. PP in particulates shape with two different melt flow indexes (MFI) was used, i.e., 3 and 23 g/10 min, namely PP3 and PP23, respectively. Three different materials, namely TiO2 nanoparticle (nTiO(2), spherical, 0D), micro-size short carbon fiber (SCF, fiber, 1D), and graphite nanoplatelet (GNP, sheet, 2D), were used as reinforcements/fillers. PP and fillers (in the desired composition) were first pre-mixed by a mechanical mixer. The mixture was then fed to a co-rotating twin-screw extruder for melt-compounding, followed by injection molding to fabricate testing samples. The microstructure and fracture surface of the composites were observed by a scanning electron microscope (SEM). Additionally, tensile, flexural, impact, and hardness tests were conducted to evaluate their mechanical properties. The SEM images stipulate that PP23 had better adhesion and dispersion with the fillers. The results from the SEM images support the mechanical testing results. PP23 composites exhibited more significant improvement in mechanical properties in comparison to PP3. At 5 wt. % filler loading, PP/GNP composite exhibited a greater improvement in mechanical properties compared with two other composites, which are PP/SCF and PP/nTiO(2) composites for both PPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available