4.6 Article

Homogenous Cr and C Doped 3D Self-Supporting NiO Cellular Nanospheres for Hydrogen Evolution Reaction

Journal

MATERIALS
Volume 15, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/ma15207120

Keywords

hydrogen evolution reaction; NiO; electrocatalysts; nanosphere

Funding

  1. Key Scientific Research Projects Plan of Henan Higher Education Institutions [19A460025]

Ask authors/readers for more resources

This paper presents the preparation and characterization of a NiO-Cr-C/NF self-supporting HER catalyst using a hydrothermal method. The catalyst exhibits improved conductivity and stability, leading to effective hydrogen evolution reaction in alkaline medium.
Hydrogen evolution reaction (HER) is one promising technique to obtain high-purity hydrogen, therefore, exploiting inexpensive and high-efficiency HER electrocatalysts is a matter of cardinal significance under the background of achieving carbon neutrality. In this paper, a hydrothermal method was used to prepare the Cr-NiC2O4/NF (Ni foam) precursor. Then, the NiO-Cr-C/NF self-supporting HER catalyst was obtained by heating the precursor at 400 degrees C. The catalyst presents a 3D cellular nanospheres structure which was composed of 2D nanosheets. Microstructure characterization shows that Cr and C elements were successfully doped into NiO. The results of electrochemical measurements and density functional theory (DFT) calculations show that under the synergy of Cr and C, the conductivity of NiO was improved, and the Gibbs free energy of H* ( increment GH*) value is optimized. As a result, in 1.0 M KOH solution the NiO-Cr-C/NF-3 (Ni:Cr = 7:3) HER catalyst exhibits an overpotential of 69 mV and a Tafel slope of 45 mV/dec when the current density is 10 mA center dot cm(-2). Besides, after 20 h of chronopotentiometry, the catalytic activity is basically unchanged. It is demonstrated that C and Cr co-doping on the lattice of NiO prepared by a simple hydrothermal method and subsequent heat treatment to improve the catalytic activity and stability of the non-precious metal HER catalysts in an alkaline medium is facile and efficient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available