4.8 Article

Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets

Journal

CARBON
Volume 81, Issue -, Pages 158-166

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2014.09.044

Keywords

-

Funding

  1. Research Council of Sharif University of Technology
  2. Iran Nanotechnology Initiative Council

Ask authors/readers for more resources

Bacteriorhodopsin (bR) molecules were utilized as light-driven proton pumps for green as well as effective reduction of single-layer graphene oxide (GO) sheets. The bR molecules and graphene sheets were separated from each other in an aqueous environment by using a polytetrafluoroethylene membrane filter, in order to prevent their direct interactions (including attachment of the bR molecules onto the GO). Although reduction of GO using hydrazine or bR showed similar deoxygenation levels (based on X-ray photoelectron spectroscopy), the former resulted in formation of CAN bonds which can substantially decrease the electrical conductivity of the reduced sheets. The electrical characteristics of the single-layer graphene sheets were studied by recording current-voltage curves of the sheets located between two Au electrodes on a SiO2 (300 nm)/Si (100) substrate. The electrical conductivity of the bR-reduced graphene oxide (rGO) sheets was found about one order of magnitude better than that of hydrazine-rGO sheets. The excellent electrical conductivity of the bR-rGO sheets (with sheet resistance of similar to 7.1 x 10(4) X/sq) was assigned to the effective deoxygenation (without formation of any CAN bonds) and better restoration of the graphitic structure of the GO sheets, using the protons pumped by the bR molecules. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available