4.6 Article

HIV-induced membraneless organelles orchestrate post-nuclear entry steps

Journal

JOURNAL OF MOLECULAR CELL BIOLOGY
Volume 14, Issue 11, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jmcb/mjac060

Keywords

HIV; nuclear condensates; nuclear remodelling; phase separation; reverse transcription

Categories

Ask authors/readers for more resources

HIV virus hijacks host cells by utilizing a biological phenomenon called liquid-liquid phase separation to form HIV-induced membraneless organelles (HIV-1 MLOs), which serve as hubs for viral replication and transcription. These structures play a crucial role in promoting the integration and replication of the virus within the host.
HIV integration occurs in chromatin sites that favor the release of high levels of viral progeny; alternatively, the virus is also able to discreetly coexist with the host. The viral infection perturbs the cellular environment inducing the remodelling of the nuclear landscape. Indeed, HIV-1 triggers the nuclear clustering of the host factor CPSF6, but the underlying mechanism is poorly understood. Our data indicate that HIV usurps a recently discovered biological phenomenon, called liquid-liquid phase separation, to hijack the host cell. We observed CPSF6 clusters as part of HIV-induced membraneless organelles (HIV-1 MLOs) in macrophages, one of the main HIV target cell types. We describe that HIV-1 MLOs follow phase-separation rules and represent functional biomolecular condensates. We highlight HIV-1 MLOs as hubs of nuclear reverse transcription, while the double-stranded viral DNA, once formed, rapidly migrates outside these structures. Transcription-competent proviruses localize outside but near HIV-1 MLOs in LEDGF-abundant regions, known to be active chromatin sites. Therefore, HIV-1 MLOs orchestrate viral events prior to the integration step and create a favorable environment for the viral replication. This study uncovers single functional host-viral complexes in their nuclear landscape, which is markedly restructured by HIV-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available