4.8 Article

Revealing the importance of surface morphology of nanomaterials to biological responses: Adsorption of the villin headpiece onto graphene and phosphorene

Journal

CARBON
Volume 94, Issue -, Pages 895-902

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2015.07.075

Keywords

-

Funding

  1. National Natural Science Foundation of China [11374221, 11204269, 11474054]
  2. China Postdoctoral Science Foundation [2014M560473]

Ask authors/readers for more resources

Phosphorene, a novel two-dimensional material with a puckered surface morphology, has been considered a potentially better alternative to graphene for future applications. Therefore, it is important to evaluate and compare the biological responses of phosphorene and graphene. In this paper, with large scale molecular dynamics simulations, the villin headpiece (HP35) was used as a model protein to investigate the disruption of protein's structure (and function) caused by both phosphorene and graphene, for comparison of their biological responses. The results show that graphene's disruption to the structure of HP35 is more severe, indicating that phosphorene's interactions with HP35 are weaker as compared to graphene. Further analysis with two additional model materials, pseudo-phosphorene and pseudo-graphene, reveal that the puckered surface can have a significant effect in weakening the materials' ability to disrupt proteins. These findings might shed light on understanding/designing the protein-nanomaterial interactions and would be helpful for the bioapplications of the new nanomaterial, phosphorene. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available