4.5 Article

Effect of Deep Cryogenic Treatment on Microstructure and Properties of AE42 Mg Alloy

Journal

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
Volume 25, Issue 9, Pages 3590-3598

Publisher

SPRINGER
DOI: 10.1007/s11665-016-2238-6

Keywords

AE42 magnesium alloy; creep; corrosion; deep cryogenic treatment; tensile; wear

Ask authors/readers for more resources

The effect of deep cryogenic treatment (DCT) on microstructure and mechanical properties including corrosion behavior of the squeeze-cast AE42 alloy has been investigated. For comparison, the same has also been studied on the untreated alloy. Both the untreated and deep cryogenic-treated (DCTed) alloys comprised alpha-Mg and Al4RE phases. Volume fraction of the Al4RE phase in the AE42 alloy reduced gradually following DCT carried out from 4 to 16 h. Ductility and UTS increase significantly with a marginal increase in YS of all the DCTed alloys. The improvement was attributed to the dissolution of the brittle Al4RE phase following DCT. Among the alloys employed, the best tensile properties were obtained for the 16-h DCT alloy due to its lowest content of the brittle Al4RE phase. Creep resistance of the DCTed alloys was lower than that of the untreated alloy owing to the presence of less amount of thermally stable intermetallic Al4RE phase. Wear resistance of the alloy reduces following DCT due to reduced hardness of the DCTed alloys. The untreated alloy exhibits the best corrosion resistance, whereas poor corrosion resistance of the DCTed alloys is attributed to the reduced amount of Al4RE phase that fails to built a corrosion resistance barrier.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available