4.4 Article

Life cycle assessment of biodiesel fuel production from waste cooking oil in Okayama City

Journal

JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT
Volume 19, Issue 4, Pages 1457-1467

Publisher

SPRINGER
DOI: 10.1007/s10163-016-0540-x

Keywords

Biodiesel fuel; Waste cooking oil; Life cycle assessment; Life cycle impact assessment; Sensitivity analysis

Funding

  1. Research Fund of Doctoral Program in Weifang University [2016BS02]

Ask authors/readers for more resources

A life cycle assessment (LCA) is performed to make clear of the actual environment impacts from conversation of waste cooking oil (WCO) to biodiesel fuel (BDF) in Okayama. A scenario analysis is carried out based on different participation rate of residents who separate WCO from general waste, corresponding to different BDF utilisation rate in transportation system. Sub scenarios complying with different gas emission standards regarding vehicles are designed as well. Afterwards, life cycle impact assessment is conducted to focus on global warming, acidification, and urban air pollution. Overall improvement of almost all kinds of life cycle inventories is significant when diesel is replaced with BDF, demonstrating that a shift from WCO-to-incineration to WCO-to-BDF is more beneficial. Under carbon neutral, compared to base scenario (S0), about 746.05 ton CO2 emission will be reduced annually in the scenario with 100 % BDF utilisation in vehicles (S4). Meanwhile, total external cost in three environmental impacts (EI) sharply reduces by 51.90 %, showing much economic sustainability in S4. Moreover, the manufacturing cost for producing one litter WCO-to-BDF is 97.32 Yen. Sensitivity analysis shows that the gas emission standard regarding vehicles had much bigger effect on EI than BDF manufacturing process in this research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available