4.6 Article

A robust defect detection method for syringe scale without positive samples

Journal

VISUAL COMPUTER
Volume 39, Issue 11, Pages 5451-5467

Publisher

SPRINGER
DOI: 10.1007/s00371-022-02671-3

Keywords

Deep learning; Defect detection; Image processing; Image segmentation

Ask authors/readers for more resources

In this paper, a robust method for scale defect detection on medical syringes is proposed. The method utilizes a two-stage framework to locate defects and achieves high detection performance.
With the worldwide spread of the COVID-19 pandemic, the demand for medical syringes has increased dramatically. Scale defect, one of the most common defects on syringes, has become a major barrier to boosting syringe production. Existing methods for scale defect detection suffer from large volumes of data requirements and the inability to handle diverse and uncertain defects. In this paper, we propose a robust scale defects detection method with only negative samples and favorable detection performance to solve this problem. Different from conventional methods that work in a batch-mode defects detection manner, we propose to locate the defects on syringes with a two-stage framework, which consists of two components, that is, the scale extraction network and the scale defect discriminator. Concretely, the SeNet is first built to utilize the convolutional neural network to extract the main structure of the scale. After that, the scale defect discriminator is designed to detect and label the scale defects. To evaluate the performance of our method, we conduct experiments on one real-world syringe dataset. The competitive results, that is, 99.7% on F1, prove the effectiveness of our method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available