4.4 Article

Polysaccharide-Based Composite Scaffolds for Osteochondral and Enthesis Regeneration

Journal

TISSUE ENGINEERING PART B-REVIEWS
Volume 29, Issue 2, Pages 123-140

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.teb.2022.0114

Keywords

tissue engineering; tendon-bone; enthesis; gellan gum; rhamnose; polysaccharides

Ask authors/readers for more resources

The regeneration of enthesis is crucial for the complete and functional healing of tendon and ligament tissues. Current suturing techniques for reattachment have high failure rates. This review discusses biomimetic scaffolds and polysaccharides as potential solutions for enthesis regeneration, with a focus on Gellan gum as a promising biopolymer with osteogenic and chondrogenic activities.
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis is prone to get damaged and its regeneration in osteochondral defects is essential for complete healing. The current clinical techniques used in suturing procedures to reattach tendons to bones need much improvement for the generation of the native interface tissue, that is, enthesis, for patients to regain their full functions. Recently, inspired by the composite native tissue, much effort has been made to fabricate composite scaffolds for enthesis tissue regeneration. This review first focuses on the studies that used composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides for osteochondral tissue engineering is reviewed and their potential for enthesis regeneration is presented based on their supporting effects on osteogenesis and chondrogenesis. Gellan gum (GG) is selected and reviewed as a promising polysaccharide due to its unique osteogenic and chondrogenic activities that help avoid the inherent weakness of dissimilar materials in composite scaffolds. In addition, original preliminary results showed that GG supports collagen type I production and upregulation of osteogenic marker genes. Impact StatementEnthesis regeneration is essential for complete and functional healing of tendon and ligament tissues. Current suturing techniques to reattach the tendon/ligament to bones have high failure rates. This review highlights the studies on biomimetic scaffolds aimed to regenerate enthesis. In addition, the potential of using polysaccharides to regenerate enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan gum is presented as a promising biopolymer that can be modified to simultaneously support bone and cartilage regeneration by providing structural continuity for the scaffold.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available