4.7 Article

Deep transfer learning for connection defect identification in prefabricated structures

Journal

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/14759217221119537

Keywords

Deep learning; transfer learning; deep convolutional neural network; defect identification; structural health monitoring

Ask authors/readers for more resources

In this study, transfer learning is employed to identify defects in structural health monitoring using deep convolutional neural networks. Experimental results demonstrate that this approach can improve identification models in cases of data scarcity.
Defect and damage identification is a crucial task in structural health monitoring (SHM) systems. Recent advances in deep neural networks (DNNs) show success in identification from data for a wide range of SHM systems. However, this approach faces challenges in terms of robustness and scalability with respect to data scarcity. Data collection for the training of DNNs from both the field and laboratory experiments is costly. To address this issue, we employ transfer learning (TL) through the use of deep convolutional neural networks (CNNs) for defect identification in the context of a sensor network's vibration data. A deep TL (DTL) paradigm is used herein so that a pretrained CNN, primarily trained for generalized defect identification tasks where sufficient training data exist (source domain), can be re-trained partially (fine-tuned) as a later secondary process that targets this application domain (target domain) specifically. Different DTL cases are compared, and training data are enhanced with numerical simulation data. The efficacy and robustness of this method are demonstrated on defect identification for full-scale prefabricated concrete shear wall structures with different levels of data scarcity. This method utilizes dynamic responses collected using a sensor network. This is an extension of deep learning vision for non-vision tasks. Defect features are extracted from the dataset of dynamic responses using this DTL frame. Experimental results show that this approach can improve identification models on datasets with few samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available