4.8 Article

Less Is More: Hollow-Truss Microlattice Metamaterials with Dual Sound Dissipation Mechanisms and Enhanced Broadband Sound Absorption

Journal

SMALL
Volume 18, Issue 44, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202204145

Keywords

3D printing; energy absorption; microlattices; sound absorption; trusses

Funding

  1. A*STAR under its AME YIRG Grant [A20E6c0099]

Ask authors/readers for more resources

Micro-lattice metamaterials have attracted increasing research interest as sound absorbers due to their lightweight nature and high design freedom. However, the current micro-lattices are limited to one sound dissipation mechanism, which hinders their broadband absorption capabilities. In this study, a dissipation mechanism is introduced by hollowing out the struts of the micro-lattice, resulting in a new hollow-truss metamaterial (HTM) that harnesses dual concurrent dissipation mechanisms from its complex truss interconnectivity and hollow interior. Experimental measurements show that HTMs exhibit superior and customizable absorption properties compared to their solid-truss counterparts. An optimal HTM achieves a high average broadband coefficient of 0.72 at a thickness of only 24 mm. The study also proposes a dissipation theorem based on the superimposed acoustic impedance of the outer-solid and inner-hollow phases in the HTM. Mechanical property studies reveal improved compressive toughness in the HTMs. This work highlights the potential of hollow-trusses in achieving dissipative mechanisms and excellent acoustic properties.
Being a lightweight material with high design freedoms, there are increasing research interests in microlattice metamaterials as sound absorbers. However, thus far, microlattices are limited to one sound dissipation mechanism, and this inhibits their broadband absorption capabilities. Herein, as opposed to improving performances via the addition of features, a dissipation mechanism is subtractively introduced by hollowing out the struts of the microlattice. Then, a class of hollow-truss metamaterial (HTM) that is capable of harnessing dual concurrent dissipation mechanisms from its complex truss interconnectivity and its hollow interior is presented. Experimental sound absorption measurements reveal superior and/or customizable absorption properties in the HTMs as compared to their constitutive solid-trusses. An optimal HTM displays a high average broadband coefficient of 0.72 at a low thickness of 24 mm. Numerically derived, a dissipation theorem based on the superimposed acoustic impedance of the critically coupled resistance and reactance of the outer-solid and inner-hollow phases, across different frequency bands, is proposed in the HTM. Complementary mechanical property studies also reveal improved compressive toughness in the HTMs. This work demonstrates the potential of hollow-trusses, where they gain the dissipation mechanism through the subtraction of the material and display excellent acoustic properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available