4.7 Article

Effect of plate distance on light conversion efficiency of a Synechocystis culture grown outdoors in a multiplate photobioreactor

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 842, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.156840

Keywords

Vertical photobioreactor; Light dilution; Light conversion efficiency; Microalgae mass culture; Synechocystis

Funding

  1. European Union [308518]

Ask authors/readers for more resources

This work analyzes and presents the performance of a vertical multiplate photobioreactor. The study shows that a narrower plate spacing leads to higher light conversion efficiency.
In this work, the performance of a vertical multiplate photobioreactor is analyzed and presented. The photobioreactor consisted of 20 vertical plates (1 m(2) each) connected by manifolds and a working volume of 1300 L. The total area occupied (footprint) was 10 m(2), while the illuminated area was 40 m(2), therefore the ratio of illuminated area to volume ratio was about 30 m(-1). The performance of the photobioreactor was evaluated using a culture of Synechocystis PCC 6803, circulated by a centrifuge pump. The results showed that the amount of light captured by the photobioreactor at a plate spacing of 0.5 m was 90.2 % of the light incident on the horizontal surface, while at a plate spacing of 1.0 m, 50.3 % was captured. The corresponding biomass yield, calculated based on the ground area occupied by the reactor, was 26.0 g m(-2) day-1 and 7.2 g m(-2) day(-1), when the plates were spaced at 0.5 m and 1.0 m respectively. Therefore, the light conversion efficiency calculated based on the ground area was significantly higher in the configuration with a plate spacing of 0.5 m, reaching 5.43 % based on PAR (photosynthetically active radiation), and 2.44 % based on solar radiation, giving a value 3.7 higher than when the plates were spaced 1.0 m apart. It was concluded that the light conversion efficiency might be further improved by reducing the plate spacing while also reducing the culture light path.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available