4.8 Review

A Review of the Effects of Haze on Solar Photovoltaic Performance

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 167, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2022.112796

Keywords

Photovoltaics; Performance assessments; Solar energy generation; Haze concentration; Air pollution; Irradiance

Funding

  1. Australian Centre of Advanced Photovoltaics (ACAP)
  2. Thompson Endowment
  3. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

This review examines the effects of haze on solar photovoltaic (PV) performance and identifies research gaps. Haze reduces irradiance and changes the solar spectrum, affecting PV materials differently. Haze also impacts revenue loss for PV operators and requires customized PV systems. Air pollution control regulations and international actions are necessary to increase global PV output.
Solar photovoltaic (PV) deployments are growing rapidly to provide a sustainable source of electricity, but their output is strongly impacted by environmental phenomena such as soiling and low irradiance conditions induced by haze from urban sources, dust, and bushfire smoke. This review examines the effects of haze on PV performance, highlights significant results, and identifies apparent research gaps in the current literature. In addition to the severe health issues caused by industrial exhausted aerosol, dust storms particles, and bushfire smoke, reduction in irradiance (in some cases up to 80%) is the most dominant impact of these sources of haze. Haze also causes changes in the received solar spectrum, and higher bandgap PV materials are more affected by the presence of haze and aerosols in the atmosphere by 20-40% than low bandgap semiconductors. In many cities throughout the world, pollution-related haze causes substantial annual revenue loss to PV operators. In addition, haze imposes severe effects on direct irradiance; therefore, tracking systems and concentrated PV systems are most affected. These technical impacts of haze all indicate the need for careful customization of PV systems for specific locations. In addition, to increase global PV output, it is clear that air pollution control regulations such as China's national policies against air pollution and eco-friendly international actions such as COP26 should be employed and executed. Further studies are needed including indoor experiments, forecasting future implications of aerosols on PV energy conversion, and performing energy policy analysis to identify associated challenges and propose practical strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available