4.7 Article

Improved global evapotranspiration estimates using proportionality hypothesis-based water balance constraints

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 279, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2022.113140

Keywords

Global evapotranspiration; Priestley -Taylor ET model; Water balance constraints; Hydrology; Proportionality hypothesis

Funding

  1. National Science Foundation of China [51979071, U2240218]
  2. National Key Research and Development Program of China [2018YFA0605402]
  3. QingLan Project of Jiangsu Province
  4. National Ten Thousand Program Youth Talent
  5. 333 project of Jiangsu Province

Ask authors/readers for more resources

The study demonstrates that the PEW model has smaller errors than the original PT-JPL algorithm, with significant improvements in water-limited regions and areas characterized by high interception. By incorporating water balance constraints into the ET algorithm, the PEW model is able to distinguish variations in ET affected by El Nino-Southern Oscillation.
Accurate estimation of global evapotranspiration (ET) is critical to understand the water and energy cycles in the Earth system. Satellite-driven ET algorithms serve as an effective way to estimate the global ET. However, many algorithms have been designed independently of water balance constraints, which potentially limit their ability to estimate ET in water-limited and high interception regions. As ET remains one of the most uncertain terms in the global water budgets, incorporating water balance constraints into algorithms should improve the performance of ET estimates. In this study, we developed a general solution (denoted PEW) based on the proportionality hypothesis to incorporate available water control into the widely used Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) ET algorithm. Simulated performances of the PEW model and PT-JPL algorithm were evaluated against 106 FLUXNET eddy covariance (EC) towers data at the site scale. Meanwhile, model results were compared at the global scale with the means of the widely used ET products. We found that the PEW model has smaller errors than the original PT-JPL algorithm, with the greatest improvements in water-limited regions and areas characterized by the high interception. Moreover, by incorporating the water balance constraints into the ET algorithm, the PEW model has the ability to distinguish variations in ET affected by El Nino-Southern Oscillation. In summary, our study offers a convincing evidence regarding the incorporation of water balance constraints into remote sensing algorithms for more accurately mapping global terrestrial ET with an enhanced understanding of ET variation under climate change. This model is the first of its kind among remote-sensing models to provide global land ET estimation with the proportionality hypothesis-based water balance constraints.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available