4.7 Article

Diesel blends with high concentrations of biodiesel and n-butanol: Effects on regulated pollutants and polycyclic aromatic hydrocarbons

Journal

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
Volume 166, Issue -, Pages 430-439

Publisher

ELSEVIER
DOI: 10.1016/j.psep.2022.08.041

Keywords

Diesel; Biodiesel; N-butanol; Diesel engine; Regulated emissions; PAHs

Ask authors/readers for more resources

This study investigates the effects of diesel, waste oil biodiesel, and n-butanol blends on engine function and emissions, finding that appropriate blend ratios can reduce NOx and PAH emissions but increase unburned hydrocarbons and CO emissions. Fuel properties not only affect PAH formation, but also influence the generation of other emissions.
Despite advances in alternative energy production (including electric vehicles and hydrogen fuel cells), fossil fuels remain ubiquitous and an ongoing threat to the environment. Alternative biofuels such as biodiesel and n-butanol have garnered substantial attention in recent years as additives to fossil diesel as a means to control emissions such as nitrous oxides (NOx) and carbon monoxide (CO). In addition, as biodiesel and alcohols do not contain aromatic hydrocarbons in their chemical structures, they provide potential additional advantages for reducing toxic emissions, including polycyclic aromatic hydrocarbons (PAHs); however, this is often only demonstrated for relatively low blend ratios (< 20 %). In this study, the effects of neat diesel, waste oil biodiesel, and n-butanol blends on engine function, regulated, and unregulated emissions were investigated for blends containing 50/50 vol% diesel/biodiesel (D50B50), 50/25/25 vol% diesel/biodiesel/n-butanol (D50B25Bu25), and 50/50 vol% diesel/n-butanol (D50Bu50), in addition to neat standard road diesel (D100) and waste oil derived biodiesel (B100). In these blends NOx was reduced by up to 28.1 % relative to D100 for loads above idle, while increasing exhaust gas temperatures up to 33.5 % and increasing unburned hydrocarbons (HC) and CO by up to 84.2 % and 93.8 %, respectively. Measured against neat diesel, biodiesel and the diesel-biodiesel-butanol blend reduced PAH toxicity by up to 46.4 %, while diesel-biodiesel and diesel-butanol blends showed an increase up to 14.3% and 504%, respectively, due to higher concentrations of 5-ring PAHs. It has been concluded that in addition to fuel aromaticity, other factors such as fuel properties affecting the diesel combustion process (i.e. cetane number), can cause PAH formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available