4.6 Article

Memory effects of local flame dynamics in turbulent premixed flames

Journal

PROCEEDINGS OF THE COMBUSTION INSTITUTE
Volume 39, Issue 2, Pages 2349-2358

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2022.07.187

Keywords

Flame particle tracking; Flame dynamics; Turbulent premixed flames; Flame stretch; Memory effects

Ask authors/readers for more resources

In this study, a premixed and thermo-diffusively unstable turbulent hydrogen-air flame-in-a-box case is simulated using the flame particle tracking (FPT) method. The assessment of memory effects in local flame dynamics is the main focus. By tracking flame particles on an iso-surface of the flame during flame-turbulence interaction, the time history of flame speed and flame stretch can be recorded for each point on the flame iso-surface in a Lagrangian reference frame. The results reveal a time delay between the local flame speed and flame stretch signal, showing that previous values of flame stretch affect currently observed values of flame speed. The time delay can be quantified by choosing flame particles dominated by single frequencies.
A premixed and thermo-diffusively unstable turbulent hydrogen-air flame-in-a-box case is simulated in conjunction with the flame particle tracking (FPT) method. The flame is located in the flamelet regime. The focus lies on the assessment of memory effects in local flame dynamics. By tracking flame particles on an iso-surface of the flame during flame-turbulence interaction, the time history of flame speed and flame stretch can be recorded for each point on the flame iso-surface in a Lagrangian reference frame. The results reveal a time delay between the local flame speed and flame stretch signal, showing that previous values of flame stretch affect currently observed values of flame speed. Furthermore, by choosing flame particles whose trajectories are dominated by single frequencies, the time delay can be quantified. While plotting instantaneous values of flame speed and flame stretch results in a large scattering for turbulent flames, a quasi-linear correlation can be achieved by shifting the time signal of flame stretch according to the time delay. The time delay itself depends on the local flow time scale, which is expressed as a local Damkohler number. There is, however, an important difference between consumption and displacement speed. While most analyses in the literature are limited to the flame displacement speed, the flame consumption speed is evaluated for each flame particle in this work as well, which shows a strong correlation with the local equivalence ratio even at unsteady conditions. As the flame particles move toward regions with more negative flame stretch, the consumption speed decreases as the flame locally extinguishes. At the same time, the diffusive component of the displacement speed increases, as the tangential component of the diffusive flux increases in regions with strong negative flame curvature.& COPY; 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available