4.6 Article

Mathematical measures of societal polarisation

Journal

PLOS ONE
Volume 17, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0275283

Keywords

-

Funding

  1. Australian Research Council (ARC) - Australian Government [FT190100645]
  2. Australian Research Council [FT190100645] Funding Source: Australian Research Council

Ask authors/readers for more resources

This paper introduces four mathematical measures for polarisation in society, including min-max flow, spectral radius, Kullback-Leibler divergence, and Hellinger distance. Results from opinion dynamics simulations show that these measures provide insight into different aspects of polarisation and allow real-time monitoring of polarisation indicators in social networks.
In opinion dynamics, as in general usage, polarisation is subjective. To understand polarisation, we need to develop more precise methods to measure the agreement in society. This paper presents four mathematical measures of polarisation derived from graph and network representations of societies and information-theoretic divergences or distance metrics. Two of the methods, min-max flow and spectral radius, rely on graph theory and define polarisation in terms of the structural characteristics of networks. The other two methods represent opinions as probability density functions and use the Kullback-Leibler divergence and the Hellinger distance as polarisation measures. We present a series of opinion dynamics simulations from two common models to test the effectiveness of the methods. Results show that the four measures provide insight into the different aspects of polarisation and allow real-time monitoring of social networks for indicators of polarisation. The three measures, the spectral radius, Kullback-Leibler divergence and Hellinger distance, smoothly delineated between different amounts of polarisation, i.e. how many cluster there were in the simulation, while also measuring with more granularity how close simulations were to consensus. Min-max flow failed to accomplish such nuance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available