4.6 Article

Prevention of non-infectious pulmonary complications after intra-bone marrow stem cell transplantation in mice

Journal

PLOS ONE
Volume 17, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0273749

Keywords

-

Funding

  1. Japan Society for the Promotion of Science KAKENHI [HN 17K09955]

Ask authors/readers for more resources

Intrabone marrow stem cell transplantation (IBM-SCT) shows superiority in reducing non-infectious pulmonary complications, improving clinical and pathological outcomes of lung chronic GVHD.
Non-infectious pulmonary complications including idiopathic pneumonia syndrome (IPS) and bronchiolitis obliterans syndrome (BOS), which are clinical and diagnostic manifestations of lung chronic graft-versus-host disease (GVHD), cause significant mortality after allogeneic stem cell transplantation (SCT). Increasing evidence suggests that alloantigen reactions in lung tissue play a central role in the pathogenesis of IPS and BOS; however, the mechanism is not fully understood. Several clinical and experimental studies have reported that intrabone marrow (IBM)-SCT provides high rates of engraftment and is associated with a low incidence of acute GVHD. In the present study, allogeneic SCT was conducted in mouse models of IPS and BOS, to compare intravenous (IV)-SCT with IBM-SCT. Allogeneic IBM-SCT improved the clinical and pathological outcomes of pulmonary complications compared to those of IV-SCT. The mechanisms underlying the reductions in pulmonary complications in IBM-SCT mice were explored. The infiltrating lung cells were mainly CD11b+ myeloid and CD3+ T cells, in the same proportions as in transplanted donor cells. In an in vivo bioluminescence imaging, a higher proportion of injected donor cells was detected in the lung during the early phase (1 h after IV-SCT) than after IBM-SCT (16.7 +/- 1.1 vs. 3.1 +/- 0.7 x 10(5) photons/s/animal, IV-SCT vs. IBM-SCT, P = 1.90 x 10(-10)). In the late phase (5 days) after SCT, there were also significantly more donor cells in the lung after IV-SCT than after IBM-SCT or allogeneic-SCT (508.5 +/- 66.1 vs. 160.1 +/- 61.9 x 10(6) photons/s/animal, IV-SCT vs. IBM-SCT, P = 0.001), suggesting that the allogeneic reaction induces sustained donor cell infiltration in the lung during the late phase. These results demonstrated that IBM-SCT is capable of reducing injected donor cells in the lung; IBM-SCT decreases donor cell infiltration. IBM-SCT therefore represents a promising transplantation strategy for reducing pulmonary complications, by suppressing the first step in the pathophysiology of chronic GVHD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available