4.7 Article

Investigation on the lubrication characteristics of low-viscosity lubricated micro-grooved bearings considering turbulence and misalignment

Journal

PHYSICS OF FLUIDS
Volume 34, Issue 11, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0127398

Keywords

-

Funding

  1. National Natural Science Foundation of China
  2. [52175085]
  3. [51875166]

Ask authors/readers for more resources

This study investigates the effects of turbulence and journal misalignment on the lubrication characteristics of micro-grooved bearings with low-viscosity lubricant using numerical methods. Mathematical models are developed and numerical simulations reveal that turbulence and misalignment can significantly influence the lubrication performance of bearings.
This paper numerically investigates the effect of turbulence and journal misalignment on the lubrication characteristics of micro-grooved bearings with low-viscosity lubricant. The generalized average Reynolds equation satisfying the mass conservation cavitation algorithm is developed by integrating the average flow model proposed by Patir and Cheng, the Ng-Pan turbulent model, and the P-theta model proposed by Elrod and Adams. With this model, the finite difference method is used in the numerical procedure. Moreover, the mathematical models of micro-grooves with different bottom shapes, that is, rectangle, isosceles triangle, left triangle, and right triangle, are given. The validity of the proposed model is verified by the comparisons with the published literature. Based on numerical simulation, the minimum film thickness, eccentricity ratio, attitude angle, maximum film pressure, friction torque, misalignment moment, film thickness, and pressure distributions under different external loads, rotational speeds, radial clearances, misalignment angles, and micro-groove parameters between models with and without turbulence and misalignment are comparatively analyzed. The numerical results reveal that turbulence may occur under heavy external load, high rotational speed, and large radius clearance. Concurrently, turbulence increases the minimum fluid film thickness and attitude angle, decreases the eccentricity ratio and friction torque, and enhances the bearing capacity. Furthermore, the larger misalignment angle results in the smaller minimum film thickness, eccentricity ratio and attitude angle, and the larger maximum film pressure, misalignment moment, and axial tilt of film pressure. Numerical simulations can provide theoretical guidance for the optimization of the geometrical parameters of micro-grooved bearings. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available