4.5 Article

A model study of convergent dynamics in the marginal ice zone

Publisher

ROYAL SOC
DOI: 10.1098/rsta.2021.0261

Keywords

marginal ice zone; modelling; ice strength; attenuation

Funding

  1. Marine Environmental Observation, Prediction and Response (MEOPAR) Network of Centres of Excellence
  2. National Science and Engineering Research Council (NSERC)

Ask authors/readers for more resources

With the advancement in forecasting models, the interaction between waves and sea ice in the marginal ice zone can now be better understood. However, the mechanics of wave propagation and attenuation in ice, and their impact on sea ice dynamics, still need further exploration. This article presents a one-dimensional wave and ice model to study different parameterizations of wave-ice interactions and investigate the response of the ice cover under various wind, wave, and ice conditions.
With the increasing resolution of operational forecasting models, the marginal ice zone (MIZ), the area where waves and sea ice interact, can now be better represented. However, the proper mechanics of wave propagation and attenuation in ice, and especially their influence on sea ice dynamics, still remain poorly understood and constrained in models. Observations have shown exponential wave energy decrease with distance in sea ice, particularly strong at higher frequencies. Some of this energy is transferred to the ice, breaking it into smaller floes and weakening it, as well as exerting a stress on the ice similar to winds and currents. In this article, we present a one-dimensional, fully integrated wave and ice model that has been developed to test different parameterizations of wave-ice interactions. The response of the ice cover to the wind and wave radiative stresses is investigated for a variety of wind, wave and ice conditions at different scales. Results of sensitivity analyses reveal the complex interplay between wave attenuation and rheological parameters and suggest that the compressive strength of the MIZ may be better represented by a Mohr-Coulomb parameterization with a nonlinear dependence on thickness.This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available