4.7 Article

Inhibition profile of trifludimoxazin towards PPO2 target site mutations

Journal

PEST MANAGEMENT SCIENCE
Volume 79, Issue 2, Pages 507-519

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.7216

Keywords

efficacy; herbicide; herbicide resistance; mutations; PPO; target site; trifludimoxazin

Ask authors/readers for more resources

In this study, the efficacy of a new triazinone-type inhibitor, trifludimoxazin, in inhibiting PPO2 enzymes carrying target site mutations was assessed. The results strongly suggest that trifludimoxazin is a potent PPO-inhibiting herbicide. This study is of significant importance for the design of new herbicides to control resistant weeds.
BACKGROUND Target site resistance to herbicides that inhibit protoporphyrinogen IX oxidase (PPO; EC 1.3.3.4) has been described mainly in broadleaf weeds based on mutations in the gene designated protoporphyrinogen oxidase 2 (PPO2) and in one monocot weed species in protoporphyrinogen oxidase 1 (PPO1). To control PPO target site resistant weeds in future it is important to design new PPO-inhibiting herbicides that can control problematic weeds expressing mutant PPO enzymes. In this study, we assessed the efficacy of a new triazinone-type inhibitor, trifludimoxazin, to inhibit PPO2 enzymes carrying target site mutations in comparison with three widely used PPO-inhibiting herbicides. RESULTS Mutated Amaranthus spp. PPO2 enzymes were expressed in Escherichia coli, purified and measured biochemically for activity and inhibition kinetics, and used for complementation experiments in an E. coli hemG mutant that lacks the corresponding microbial PPO gene function. In addition, we used ectopic expression in Arabidopsis and structural PPO protein modeling to support the enzyme inhibition study. The generated data strongly suggest that trifludimoxazin is a strong inhibitor both at the enzyme level and in transgenics Arabidopsis ectopically expressing PPO2 target site mutations. CONCLUSION Trifludimoxazin is a potent PPO-inhibiting herbicide that inhibits various PPO2 enzymes carrying target site mutations and could be used as a chemical-based control strategy to mitigate the widespread occurrence of PPO target site resistance as well as weeds that have evolved resistance to other herbicide mode of actions. (c) 2022 BASF SE and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available