4.6 Article

Far-field sub-wavelength imaging using high-order dielectric continuous metasurfaces

Journal

OPTICS EXPRESS
Volume 30, Issue 21, Pages 39025-39039

Publisher

Optica Publishing Group
DOI: 10.1364/OE.470221

Keywords

-

Categories

Ask authors/readers for more resources

Due to the wave nature of light, the resolution of conventional imaging systems is limited. In this paper, a high-order continuous dielectric metasurface is designed to convert evanescent waves into propagating modes, enabling the reconstruction of super-resolution images in the far field.
Due to the wave nature of light, the resolution achieved in conventional imaging systems is limited to around half of the wavelength. The reason behind this limitation, called diffraction limit, is that part of the information of the object carried by the evanescent waves scattered from an abject. Although retrieving information from propagating waves is not difficult in the far-field region, it is very challenging in the case of evanescent waves, which decay exponentially as travel and lose their power in the far-field region. In this paper, we design a high-order continuous dielectric metasurface to convert evanescent waves into propagating modes and subsequently to reconstruct super-resolution images in the far field. The designed metasurface is characterized and its performance for sub-wavelength imaging is verified using full wave numerical simulations. Simulation results show that the designed continuous high-order metasurface can convert a large group of evanescent waves into propagating ones. The designed metasurface is then used to reconstruct the image of objects with sub-wavelength features, and an image with the resolution of lambda/5.5 is achieved. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available