4.7 Review

Experimental study of MMI structures in a switchable continuous-wave thulium-doped all-fiber laser

Journal

OPTICS AND LASER TECHNOLOGY
Volume 153, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.optlastec.2022.108231

Keywords

Multimodal interference; Thulium doped fiber; Multi-wavelength emission; Coreless optical fiber

Funding

  1. CONACyT ? [217560]

Ask authors/readers for more resources

This study reports switchable multi-wavelength laser emission from a thulium-doped all-fiber laser by implementing tapered and non-tapered multi-modal interference (MMI) filters. The tapered MMI structure achieves lower insertion loss and more wavelength emission options in the 2μm region.
Switchable multi-wavelength laser emission from a thulium-doped all-fiber laser is reported by implementing a tapered and a non-tapered multi-modal interference (MMI) filters. The MMI structure relies on a coreless optical fiber spliced in between two single-mode optical fibers. For the non-tapered case, a minimum insertion loss of 12.60 dB is achieved around the 2-mu m region, from which stable generation of commutable dual-wavelength emission at 1986.34 nm and 2017.38 nm is obtained. On the other hand, the tapered MMI structure performs a minimum insertion loss of 8.74 dB at the 2-mu m region, allowing a stable triple-wavelength emission at 1995.4 nm, 2013.3 nm, and 2038.3 nm. In addition, commutable dual-wavelength emission was also obtained at 1997.9 nm and 2032.1 nm. The generated laser lines perform bandwidths of around 50 pm, low peak spectral power fluctuations and signal-to-noise ratio of 50 dB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available