4.8 Article

Regulatory chromatin rewiring promotes metabolic switching during adaptation to oncogenic receptor tyrosine kinase inhibition

Journal

ONCOGENE
Volume 41, Issue 43, Pages 4808-4822

Publisher

SPRINGERNATURE
DOI: 10.1038/s41388-022-02465-w

Keywords

-

Funding

  1. Wellcome Trust [103857/Z/14/Z, 102171/Z/13/Z]
  2. Wellcome Trust [103857/Z/14/Z] Funding Source: Wellcome Trust

Ask authors/readers for more resources

This study reveals the adaptability of OAC cells to ERBB2 inhibition in a drug resistant state, with HNF4A and PPARGC1A playing key roles in this process.
Oesophageal adenocarcinoma (OAC) patients show poor survival rates and there are few targeted molecular therapies available. However, components of the receptor tyrosine kinase (RTK) driven pathways are commonly mutated in OAC, typified by high frequency amplifications of the RTK ERBB2. ERBB2 can be therapeutically targeted, but this has limited clinical benefit due to the acquisition of drug resistance. Here we examined how OAC cells adapt to ERBB2 inhibition as they transition to a drug resistant state. ERBB2 inhibition triggers widespread remodelling of the accessible chromatin landscape and the underlying gene regulatory networks. The transcriptional regulators HNF4A and PPARGC1A play a key role in this network rewiring. Initially, inhibition of cell cycle associated gene expression programmes is observed, with compensatory increases in the programmes driving changes in metabolic activity. Both PPARGC1A and HNF4A are required for the acquisition of resistance to ERBB2 inhibition and PPARGC1A is instrumental in promoting a switch to dependency on oxidative phosphorylation. Our work therefore reveals the molecular pathways that support the acquisition of a resistant state and points to potential new therapeutic strategies to combat cellular adaptation and ensuing drug resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available