4.5 Article

Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides

Journal

CARBOHYDRATE RESEARCH
Volume 407, Issue -, Pages 73-78

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carres.2015.01.014

Keywords

HPAEC-PAD; Method validation; Chitin oligosaccharide; Chitinase; Aspergillus niger; Carbohydrate binding module

Funding

  1. SenterNovem [IGE07008]

Ask authors/readers for more resources

The abundant polymer chitin can be degraded by chitinases (EC 3.2.1.14) and beta-N-acetyl-hexosaminidases (EC 3.2.1.52) to oligosaccharides and N-acetyl-glucosamine (GlcNAc) monomers. Kinetic characterization of these enzymes requires product quantification by an assay method with a low detection limit, preferably compatible with the use of native, non-labeled substrates. Here we report a quantitative HPAEC-PAD method that allows fast separation of chitin oligosaccharides (COS) ranging from (GlcNac)(1-6) at detection limits of 1-3 pmol and a linear range of 5-250 pmol. Quantification under intra-and interday precision conditions was performed with 2.1-5.4% relative standard deviation (RSD) and 1.2-10.3% RSD, respectively. This method was successfully used for the determination of the kinetic parameters of the Aspergillus niger chitinase CfcI with native COS. CfcI was recently shown to release GlcNAc from the reducing end of COS, a new activity for fungal chitinases. A Carbohydrate Binding Module of family 18 (CBM18) is inserted in the CfcI catalytic domain. Site directed mutagenesis was used to assess the functionality of this CfcI-CBM18: four of its key amino acids were replaced by glycine residues, yielding CfcI(SYNF). Comparison of the kinetic parameters of CfcI and CfcISYNF confirmed that this CBM18 is functionally involved in catalysis. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available