4.4 Article

Depth dose measurements in water for 11C and 10C beams with therapy relevant energies

Publisher

ELSEVIER
DOI: 10.1016/j.nima.2022.167464

Keywords

Radioactive ion beams; Ion beam therapy; Range monitoring; Carbon ions

Funding

  1. European Research Council (ERC)
  2. [883425]

Ask authors/readers for more resources

Ion beam therapy has better success/toxicity ratio compared to conventional radiotherapy, but is sensitive to range uncertainties. Beta(+) - radioactive ion beams can be used for accurate online range monitoring without compromising the advantages of ion beam therapy. However, the challenging production of radioactive ion beams hinders their clinical application.
Owing to the favorable depth-dose distribution and the radiobiological properties of heavy ion radiation, ion beam therapy shows an improved success/toxicity ratio compared to conventional radiotherapy. The sharp dose gradients and very high doses in the Bragg peak region, which represent the larger physical advantage of ion beam therapy, make it also extremely sensitive to range uncertainties. The use of beta(+) - radioactive ion beams would be ideal for simultaneous treatment and accurate online range monitoring through PET imaging. Since all the unfragmented primary ions are potentially contributing to the PET signal, these beams offer an improved image quality while preserving the physical and radiobiological advantages of the stable counterparts. The challenging production of radioactive ion beams and the difficulties in reaching high intensities, have discouraged their clinical application. In this context, the project Biomedical Applications of Radioactive ion Beams (BARB) started at GSI (Helmholtzzentrum fur Schwerionenforschung GmbH) with the main goal to assess the technical feasibility and investigate possible advantages of radioactive ion beams on the pre-clinical level. During the first experimental campaign C-11 and C-10 beams were produced and isotopically separated with the FRagment Separator (FRS) at GSI. The beta(+)-radioactive ion beams were produced with a beam purity of 99% for all the beam investigated (except one case where it was 94%) and intensities potentially sufficient to treat a small animal tumors within few minutes of irradiation time, similar to 10(6) particle per spill for the C-10 and similar to 10(7) particle per spill for the C-11 beam, respectively. The impact of different ion optical parameters on the depth dose distribution was studied with a precision water column system. In this work, the measured depth dose distributions are presented together with results from Monte Carlo simulations using the FLUKA software.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available