4.8 Article

Efficient selenium-integrated TADF OLEDs with reduced roll-off

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Quenching-Resistant Multiresonance TADF Emitter Realizes 40% External Quantum Efficiency in Narrowband Electroluminescence at High Doping Level

Pengcheng Jiang et al.

Summary: This study introduces a highly emissive molecule with enhanced quenching resistance by segregating the planar MR-TADF skeleton using two bulky carbazolyl units, which significantly improves the performance of corresponding devices with a maximum external quantum efficiency of 40.0% and a full width at half maximum of 25 nm. The steric effect of the bulky carbazolyl units largely removes the formation of detrimental excimers/aggregates, leading to an OLED example that can achieve narrow bandwidth and high EL efficiency surpassing 40% to date.

ADVANCED MATERIALS (2022)

Article Engineering, Environmental

Heavy-atom effect promotes multi-resonance thermally activated delayed fluorescence

Tao Hua et al.

Summary: The development of MR-TADF materials, incorporating sulfur atom into the B-N based framework, has led to significant improvements in the performance of organic light-emitting diodes, resulting in highly efficient green emission with maximum external quantum efficiency.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Optics

Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission

Chin-Yiu Chan et al.

Summary: This study presents pure-blue OLEDs with high efficiency, narrow emission, and good stability, showing promise for display applications. The design is based on a two-unit stacked tandem hyperfluorescence OLED with strict control of device fabrication and procedures to further improve device lifetimes.

NATURE PHOTONICS (2021)

Article Optics

High-efficiency, long-lifetime deep-blue organic light-emitting diodes

Soon Ok Jeon et al.

Summary: By combining a new design of blue TADF materials with a triplet-exciton recycling protocol, high efficiency and long lifetime were achieved in deep-blue organic light-emitting diodes.

NATURE PHOTONICS (2021)

Article Chemistry, Multidisciplinary

Peripheral Decoration of Multi-Resonance Molecules as a Versatile Approach for Simultaneous Long-Wavelength and Narrowband Emission

Yanyu Qi et al.

Summary: A new approach of peripherally decorating MR emitter with electron donors enables the emission spectra of MR emitters to red-shift while retaining narrowband emission, leading to the realization of the first narrowband yellow emitter with emission maxima of 562 nm and excellent color purity. Highly efficient OLEDs with an external quantum efficiency of over 24% are fabricated by employing these newly developed MR molecules as emitters.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Copper(I) Complex as Sensitizer Enables High-Performance Organic Light-Emitting Diodes with Very Low Efficiency Roll-Off

Lisi Zhan et al.

Summary: A novel carbene-Cu(I)-amide complex, (MAC*)Cu(Cz), has been demonstrated as a promising TADF sensitizer for OLEDs, achieving high efficiencies, low efficiency roll-off, and long operational lifetimes. The use of this sensitizer also led to breakthroughs in high-efficiency yellow-emitting OLEDs, showcasing the potential for practical applications of TADF sensitized OLEDs.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Multi-Resonance Deep-Red Emitters with Shallow Potential-Energy Surfaces to Surpass Energy-Gap Law

Yuewei Zhang et al.

Summary: Efficient deep-red organic emitters with high quantum efficiencies were developed by constructing polycyclic heteroaromatics with multiple boron and nitrogen atoms. The introduction of specific structures led to restricted π-bonding states and shallow potential energy surfaces, enabling the emitters to achieve high quantum efficiencies in a normal planar organic light-emitting diode structure.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Activating Room-Temperature Phosphorescence of Organic Luminophores via External Heavy-Atom Effect and Rigidity of Ionic Polymer Matrix**

Zi-Ang Yan et al.

Summary: This study introduces a new general strategy for designing and developing pure organic RTP materials starting from an existing library of organic dyes without the need for complicated chemical synthesis.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Achieving Narrow FWHM and High EQE Over 38% in Blue OLEDs Using Rigid Heteroatom-Based Deep Blue TADF Sensitized Host

Ramanaskanda Braveenth et al.

Summary: By designing and synthesizing two new deep blue TADF materials, deep blue emission and high efficiency have been achieved in OLED devices. The deep blue TADF emitters exhibit outstanding external quantum efficiency and high photoluminescence quantum yields.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Molecular design of thermally activated delayed fluorescent emitters for narrowband orange-red OLEDs boosted by a cyano-functionalization strategy

Yang Liu et al.

Summary: By attaching a cyano functionality at the lowest unoccupied molecular orbital location of the MR-TADF skeleton, the red-shifted emission and good color purity of orange-red MR-TADF emitters can be achieved. The coplanar conformation of the CN group helps to restrict structure relaxation and maintain the high-quality emission characteristics in orange-red TADF-OLEDs.

CHEMICAL SCIENCE (2021)

Article Chemistry, Physical

The MRCC program system: Accurate quantum chemistry from water to proteins

Mihaly Kallay et al.

JOURNAL OF CHEMICAL PHYSICS (2020)

Article Chemistry, Multidisciplinary

Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Aza-Fused Multi-Resonance Emitter

Yuewei Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Nanoscience & Nanotechnology

Room-temperature phosphorescence from organic aggregates

Weijun Zhao et al.

NATURE REVIEWS MATERIALS (2020)

Article Chemistry, Multidisciplinary

Full-Color, Narrowband, and High-Efficiency Electroluminescence from Boron and Carbazole Embedded Polycyclic Heteroaromatics

Minlang Yang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

Degradation Mechanisms in Blue Organic Light-Emitting Diodes

Dan Wang et al.

CCS CHEMISTRY (2020)

Article Chemistry, Multidisciplinary

Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs

Yuewei Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Peripheral Amplification of Multi-Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs

Xiao Liang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Review Nanoscience & Nanotechnology

All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes

Yuchao Liu et al.

NATURE REVIEWS MATERIALS (2018)

Article Chemistry, Physical

Evaluation of Spin-Orbit Couplings with Linear-Response Time-Dependent Density Functional Methods

Xing Gao et al.

JOURNAL OF CHEMICAL THEORY AND COMPUTATION (2017)

Article Chemistry, Multidisciplinary

Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes

Michael Y. Wong et al.

ADVANCED MATERIALS (2017)

Article Chemistry, Multidisciplinary

Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence

Zhiyong Yang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Multidisciplinary Sciences

Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence

Marc K. Etherington et al.

NATURE COMMUNICATIONS (2016)

Article Chemistry, Multidisciplinary

Efficiency Roll-Off in Organic Light-Emitting Diodes

Caroline Murawski et al.

ADVANCED MATERIALS (2013)

Article Multidisciplinary Sciences

Highly efficient organic light-emitting diodes from delayed fluorescence

Hiroki Uoyama et al.

NATURE (2012)

Article Chemistry, Physical

Triplet-polaron quenching in conjugated polymers

D. Hertel et al.

JOURNAL OF PHYSICAL CHEMISTRY B (2007)

Article Chemistry, Physical

Intersystem crossing processes in nonplanar aromatic heterocyclic molecules

Karin Schmidt et al.

JOURNAL OF PHYSICAL CHEMISTRY A (2007)

Article Materials Science, Multidisciplinary

Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation

MA Baldo et al.

PHYSICAL REVIEW B (2000)