4.8 Article

Polyatomic molecules with emission quantum yields >20% enable efficient organic light-emitting diodes in the NIR(II) window

Journal

NATURE PHOTONICS
Volume 16, Issue 12, Pages 843-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41566-022-01079-8

Keywords

-

Funding

  1. Innovation and Technology Fund [ITS/196/20]
  2. NSFC-RGC Joint Research Scheme of Hong Kong [N_CityU102/19]
  3. Ministry of Science and Technology of Taiwan [MOST-110-2639-M-002-001-ASP]
  4. Natural Science Foundation of China [61961160731]
  5. Collaborative Innovation Center of Suzhou Nano Science and Technology

Ask authors/readers for more resources

This study revisits the theory of the energy gap law and proposes two approaches to favor emission. Experimental proof of concept is provided by designing and synthesizing a new series of self-assembled Pt(II) complexes. The results contribute significantly to the development of efficient OLEDs in the NIR(II) region.
The emission of light by polyatomic molecules in the spectral region of the second near-infrared (NIR(II)) window is severely hampered by the energy gap law, namely the quenching induced by exciton-vibration coupling. As a result, organic light-emitting diodes (OLEDs) with efficient emission wavelengths of similar to 1,000 nm and above are rare, despite their potential for phototherapy and bioimaging. In this study we revisit the theory of the energy gap law to quantify the contribution of each coupled vibrational mode to non-radiative transitions. The results lead us to propose two approaches that favour emission: molecular packing to extend exciton delocalization, and deuterium substitution to reduce high-frequency vibrations. We provide an experimental proof of concept by designing and synthesizing a new series of self-assembled Pt(II) complexes that exhibit high-intensity phosphorescence with peak quantum yields of (23 +/- 0.3)% at approximately 1,000 nm. The corresponding OLEDs emit at a peak wavelength of 995 nm with a maximum external quantum efficiency of 4.31% and a radiance of 1.55 W sr(-1) m(-2), marking a substantial contribution to the development of efficient OLEDs in the NIR(II) region. A new series of self-assembled Pt(II) complexes with high emission quantum yields enables OLEDs with a maximum emission wavelength of 995 nm and an external quantum efficiency of 4.3%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available