4.8 Article

Measured proton electromagnetic structure deviates from theoretical predictions

Journal

NATURE
Volume 611, Issue 7935, Pages 265-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-022-05248-1

Keywords

-

Funding

  1. US Department of Energy Office of Science, Office of Nuclear Physics [DE-SC0016577, DE-AC05-06OR23177]
  2. U.S. Department of Energy (DOE) [DE-SC0016577] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

The visible world is built on the stable proton, the only composite building block of matter. Understanding matter formation relies on explaining the dynamics and properties of the proton's bound state. This involves the response of the proton to an electromagnetic field, characterized by electromagnetic polarizabilities and generalized polarizabilities. However, there has been a long-standing puzzle regarding the electric generalized polarizability of the proton, suggesting the presence of an unresolved dynamical mechanism.
The visible world is founded on the proton, the only composite building block of matter that is stable in nature. Consequently, understanding the formation of matter relies on explaining the dynamics and the properties of the proton's bound state. A fundamental property of the proton involves the response of the system to an external electromagnetic field. It is characterized by the electromagnetic polarizabilities(1) that describe how easily the charge and magnetization distributions inside the system are distorted by the electromagnetic field. Moreover, the generalized polarizabilities(2) map out the resulting deformation of the densities in a proton subject to an electromagnetic field. They disclose essential information about the underlying system dynamics and provide a key for decoding the proton structure in terms of the theory of the strong interaction that binds its elementary quark and gluon constituents. Of particular interest is a puzzle in the electric generalized polarizability of the proton that remains unresolved for two decades(2). Here we report measurements of the proton's electromagnetic generalized polarizabilities at low four-momentum transfer squared. We show evidence of an anomaly to the behaviour of the proton's electric generalized polarizability that contradicts the predictions of nuclear theory and derive its signature in the spatial distribution of the induced polarization in the proton. The reported measurements suggest the presence of a new, not-yet-understood dynamical mechanism in the proton and present notable challenges to the nuclear theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available