4.6 Article

Synthesis and Characterization of Curcumin-Loaded Nanoparticles of Poly(Glycerol Sebacate): A Novel Highly Stable Anticancer System

Journal

MOLECULES
Volume 27, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/molecules27206997

Keywords

curcumin; poly(glycerol sebacate); nanoparticles; drug delivery system; human cervical cancer

Funding

  1. Universita degli Studi di Milano [RV_PSR_SOE_2020_GDICA, PSR2020_DIP_005_PI_ACOLO]
  2. Fondazione Umberto Veronesi

Ask authors/readers for more resources

The research focuses on alternative administration methods for anticancer drugs using polymeric nanostructured delivery systems. Curcumin, a naturally occurring polyphenolic phytochemical, was encapsulated within nanoparticles to enhance its therapeutic effects. The study demonstrated that curcumin-loaded nanoparticles exhibited enhanced cytotoxicity against human cervical cancer cells compared to free curcumin.
The research for alternative administration methods for anticancer drugs, towards enhanced effectiveness and selectivity, represents a major challenge for the scientific community. In the last decade, polymeric nanostructured delivery systems represented a promising alternative to conventional drug administration since they ensure secure transport to the selected target, providing active compounds protection against elimination, while minimizing drug toxicity to non-target cells. In the present research, poly(glycerol sebacate), a biocompatible polymer, was synthesized and then nanostructured to allow curcumin encapsulation, a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of Curcuma longa L. Curcumin was selected as an anticancer agent in virtue of its strong chemotherapeutic activity against different cancer types combined with good cytocompatibility within healthy cells. Despite its strong and fascinating biological activity, its possible exploitation as a novel chemotherapeutic has been hampered by its low water solubility, which results in poor absorption and low bioavailability upon oral administration. Hence, its encapsulation within nanoparticles may overcome such issues. Nanoparticles obtained through nanoprecipitation, an easy and scalable technique, were characterized in terms of size and stability over time using dynamic light scattering and transmission electron microscopy, confirming their nanosized dimensions and spherical shape. Finally, biological investigation demonstrated an enhanced cytotoxic effect of curcumin-loaded PGS-NPs on human cervical cancer cells compared to free curcumin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available