4.6 Article

Acrylamide Induces Neurotoxicity in SH-SY5Y Cells via NLRP3-mediated Pyroptosis

Journal

MOLECULAR NEUROBIOLOGY
Volume 60, Issue 2, Pages 596-609

Publisher

SPRINGER
DOI: 10.1007/s12035-022-03098-6

Keywords

Acrylamide; Pyroptosis; NLRP3 inflammasome; Neuroinflammation

Categories

Ask authors/readers for more resources

In this study, the mechanisms of ACR-induced neuroinflammation and pyroptosis were investigated using a neuron cell model. The results showed that ACR treatment induced lytic cell death through two different pyroptotic pathways in SH-SY5Y cells. Additionally, the NLRP3 inflammasome cascade was found to be activated first.
Acrylamide (ACR), a soft electrophile, is a typical environmental and food contaminant that presents potential health hazards and, consequently, is attracting increasing attention in the quest for its control. ACR neurotoxicity has been widely reported in experimental animals and attributed to neuroinflammation; however, the mechanisms involved therein require clarification. In this study, we used a neuron cell model to investigate the mechanisms of ACR-induced neuroinflammation and pyroptosis. The results showed that ACR treatment induced lytic cell death morphologically under both the canonical pyroptotic pathway (NOD-like receptor protein 3 (NLRP3)-apoptosis-associated speck-like protein containing CARD (ASC)-cysteinyl aspartate specific proteinase 1 (caspase-1)-gasdermin D (GSDMD)-interleukin-1 beta (IL-1 beta)/interleukin-18 (IL-18)) and an alternative pyroptotic pathway (cysteinyl aspartate specific proteinase 3 (caspase-3)-gasdermin E (GSDME)-IL-1 beta/IL-18) in SH-SY5Y cells. Moreover, the lactate dehydrogenase (LDH) production, cytokines release, and lytic cell death induced by ACR were diminished by caspase-1 and -3 inhibitors. Furthermore, the knockdown of caspase-1 by small interfering RNA attenuated ACR-induced lytic cell death, suggesting that canonical pyroptosis (the NLRP3-caspase 1-GSDMD-IL-1 beta signaling axis) played a primary role in the ACR-induced pyroptosis. Of the two pyroptotic-related pathways, the NLRP3 inflammasome cascade was activated first within the 6-h period of ACR exposure, while the activation of the alternative pyroptotic pathway was delayed. Collectively, these results indicate that ACR mainly induces NLRP3-related neuroinflammation and pyroptosis in SH-SY5Y cells, which is, thus, suggestive of an alternative mechanism for ACR-induced neurotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available