4.8 Article

Spectral Tuning, Stabilities under External Exposures, and Spontaneous Enhancement of Emission Intensity in Grown-into-Glass All-Inorganic Metal Halide Perovskite Nanocrystals

Journal

LASER & PHOTONICS REVIEWS
Volume 17, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/lpor.202200166

Keywords

CsPbBr3; glass; laser lighting; luminescence sustainability and enhancement; spectral tuning

Ask authors/readers for more resources

In this study, CsPbBr3:Ln(3+) nanocrystals grown into glass were successfully designed and fabricated using an in situ nanocrystallization method. It was found that substitution of Pb2+ sites with Ln(3+) ions led to a blueshift of emission position. The nanocrystals exhibited excellent photoluminescent properties and showed good stability in various environments. Additionally, the emission intensity could be controlled through heat-cooling experiments and laser irradiation. Furthermore, a white light-emitting prototype was achieved by combining the CsPbBr3 nanocrystals with other phosphors.
Herein, the grown-into-glass (GIG) CsPbBr3:Ln(3+) (Ln = La, Lu) nanocrystals (NCs) are designed and fabrictaed using an in situ nanocrystallization method. It is shown that a substitution of Pb2+ sites with Ln(3+) ions leads to a blueshift of emission position induced by an increase of the bandgap of CsPbBr3. Additionally, the GIG-samples are revealed to feature excellent photoluminescent (PL) properties after being immersed respectively in water for 300 days at room temperature, boiling water for 12 h, and corrosive environments for 24 h, as well as recoverable PL intensity either after several cycles of heat-cooling experiments or after being continuously exposed to a 405 nm laser irradiation. Besides, a spontaneous enhancement of 20-25% of emission intensity during the 1-2.5 hours' stage of a 405 nm laser irradiation, attributed to the radiative recombination of charge carriers that can be de-trapped from trapping levels upon the laser light irradiation and that then spontaneously reinforces the emission intensity, is observed in the GIG-CsPbBr3:Ln(3+) NCs. Finally, a white light-emitting prototype, with a CIE chromaticity coordinate at (0.4110, 0.3706), a color rendering index of 89 and a correlated color temperature of 3363 K is realized by combining the GIG-CsPbBr3 NCs, YAG:Ce and CaWO4:Eu phosphors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available