4.8 Letter

WHO's Therapeutics and COVID-19 Living Guideline on mAbs needs to be reassessed

Related references

Note: Only part of the references are listed.
Article Biochemistry & Molecular Biology

The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic

Markus Hoffmann et al.

Summary: The Omicron variant of SARS-CoV-2 is spreading rapidly and shows resistance to most therapeutic antibodies. It also evades neutralization by antibodies induced by infection or vaccination more efficiently than the Delta variant. This suggests that therapeutic antibodies may not be effective against the Omicron variant, and double vaccination with BNT162b2 may not provide adequate protection against severe disease caused by this variant.
Letter Medicine, General & Internal

Three-dose vaccination elicits neutralising antibodies against omicron

Mary Wu et al.

LANCET (2022)

Article Multidisciplinary Sciences

Considerable escape of SARS-CoV-2 Omicron to antibody neutralization

Delphine Planas et al.

Summary: The Omicron variant of SARS-CoV-2, identified in November 2021, has spread rapidly worldwide and shows resistance to most therapeutic monoclonal antibodies and vaccine-elicited antibodies. However, it can be neutralized by antibodies generated by a booster vaccine dose.

NATURE (2022)

Article Biochemistry & Molecular Biology

Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies

Timothee Bruel et al.

Summary: There are differences in neutralizing activity of therapeutic antibodies against the SARS-CoV-2 Omicron BA.1 and BA.2 sublineages, and immunocompromised individuals treated with antibodies show elevated antibody levels but reduced neutralization against Omicron. Breakthrough infections with the Omicron variant are observed in some immunocompromised individuals despite antibody treatment.

NATURE MEDICINE (2022)

Letter Infectious Diseases

Augmented neutralisation resistance of emerging omicron subvariants BA.2.12.1, BA.4, and BA.5

Prerna Arora et al.

LANCET INFECTIOUS DISEASES (2022)

Article Multidisciplinary Sciences

BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection

Yunlong Cao et al.

Summary: Omicron sublineages BA.2.12.1, BA.4 and BA.5 have higher transmissibility and increased evasion of neutralizing antibodies compared to the BA.2 lineage. They exhibit similar binding affinities to the ACE2 receptor as BA.2. BA.1 infection after vaccination boosts humoral immune memory against wild-type SARS-CoV-2, but these antibodies are largely evaded by BA.2 and BA.4/BA.5 variants.

NATURE (2022)

Letter Infectious Diseases

Bebtelovimab: considerations for global access to treatments during a rapidly evolving pandemic

Russell M. Nichols et al.

LANCET INFECTIOUS DISEASES (2022)

Letter Medicine, General & Internal

AZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOC

Emma C. Wall et al.

LANCET (2021)

Article Multidisciplinary Sciences

Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies

Florian A. Lempp et al.

Summary: The study reveals that C-type lectin receptors and other factors can serve as attachment receptors for SARS-CoV-2 infection, enhancing ACE2-mediated infection and modulating the neutralizing activity of antibodies.

NATURE (2021)