4.7 Article

A multi-scale framework to predict damage initiation at martensite/ferrite interface

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2022.105018

Keywords

Multi-scale framework; Dual-phase steel; Martensite; ferrite interface; Damage initiation; Substructure boundary sliding; Interface orientation

Funding

  1. Materials Innovation Institute (M2i) by Dutch government [T17019d]
  2. Dutch government

Ask authors/readers for more resources

A multi-scale model based on microphysics is developed to predict and assess the M/F interface damage in dual-phase steels. The model considers both macro and microstructural scales and determines an effective indicator for interface damage initiation based on microphysics. By conducting interface unit cell simulations, an effective model is identified, enabling efficient prediction of mesoscale M/F interface damage initiation.
Martensite/ferrite (M/F) interface damage largely controls failure of dual-phase (DP) steels. In order to predict the failure and assess the ductility of DP steels, accurate models for the M/F interfacial zones are needed. Several M/F interface models have been proposed in the literature, which however do not incorporate the underlying microphysics. It has been recently suggested that (lath) martensite substructure boundary sliding dominates the M/F interface damage initiation and therefore should be taken into account. Considering the computationally infeasibility of direct numerical simulations of statistically representative DP steel microstructures, while explicitly resolving the interface microstructures and the sliding activity, a novel multi-scale approach is developed in this work. Two scales are considered: the DP steel mesostructure consisting of multiple lath martensite islands embedded in a ferrite matrix, and the microscopic M/F interfacial zone unit cell resolving the martensite substructure. Based on the emerging microscopic damage initiation pattern, an effective indicator for the M/F interface damage initiation is determined from the interface microstructural unit cell response, along with the effective sliding in this unit cell. Relating these two effective quantities for different interface microstructural configurations leads to an effective mesoscale model relating the interface damage indicator to the sliding activity of the martensite island in terms of the mesoscopic kinematics. This microphysics-based M/F interface damage indicator model, which could not be envisioned a-priori, is fully identified from a set of interfacial unit cell simulations, thus enabling the efficient prediction of interface damage initiation at the mesoscale. The capability of the developed effective model to predict the mesoscopic M/F interface damage initiation is demonstrated on an example of a realistic DP steel mesostructure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available