4.3 Article

Reduced complexity models for regional aquatic habitat suitability assessment

Journal

Publisher

WILEY
DOI: 10.1111/1752-1688.13077

Keywords

river; fish habitat; habitat suitability model; water management; conservation planning; stream temperature; Utah

Ask authors/readers for more resources

This study estimated aquatic habitat suitability for Bonneville Cutthroat Trout and Bluehead Sucker in Utah using publicly available geospatial datasets. The researchers evaluated 15 habitat suitability models and found that simple models outperformed those that used only streamflow. These models are useful for conservation planning and water resources decision-making.
Generalizable methods that identify suitable aquatic habitat across large river basins and regions are needed to inform resource management. Habitat suitability models intersect environmental variables to predict species occurrence, but are often data intensive and thus are typically developed at small spatial scales. This study estimated mean monthly aquatic habitat suitability throughout Utah (USA) for Bonneville Cutthroat Trout (Oncorhynchus clarkii utah) and Bluehead Sucker (Catostomus discobolus) with publicly available, geospatial datasets. We evaluated 15 habitat suitability models using unique combinations of percent of mean annual discharge, velocity, gradient, and stream temperature. Environmental variables were validated with observed conditions and species presence observations to verify habitat suitability estimates. Stream temperature, gradient, and discharge best predicted Bonneville Cutthroat Trout presence, and gradient and discharge best predicted Bluehead Sucker presence. Simple aquatic habitat suitability models outperformed models that used only streamflow to estimate habitat for both species, and are useful for conservation planning and water resources decision-making. This modeling approach could enable resource managers to prioritize stream restoration across vast regions within their management domain, and is potentially compatible with water management modeling to improve ecological objectives in management models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available