4.8 Article

Spontaneous Seed Formation during Electrodeposition Drives Epitaxial Growth of Metastable Bismuth Selenide Microcrystals

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 144, Issue 40, Pages 18272-18285

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c05261

Keywords

-

Funding

  1. National Science Foundation (NSF) [CHE-1753344, CBET-1729787, DMR-1806147, DMR-2122070]
  2. MARC U-STAR program at Washington University

Ask authors/readers for more resources

The electrochemical growth of bismuth selenide microcrystals in the metastable orthorhombic phase at room temperature in aqueous solution is reported in this study. The spontaneous formation of a seed layer containing nanocrystals of cubic BiSe enforces the metastable phase, allowing for the growth on a variety of substrates. This method broadens the range of applications for this semiconductor in optoelectronic and electrochemical devices.
Materials with metastable phases can exhibit vastly different properties from their thermodynamically favored counterparts. Methods to synthesize metastable phases without the need for high-temperature or high-pressure conditions would facilitate their widespread use. We report on the electrochemical growth of microcrystals of bismuth selenide, Bi2Se3, in the metastable orthorhombic phase at room temperature in aqueous solution. Rather than direct epitaxy with the growth substrate, the spontaneous formation of a seed layer containing nanocrystals of cubic BiSe enforces the metastable phase. We first used single-crystal silicon substrates with a range of resistivities and different orientations to identify the conditions needed to produce the metastable phase. When the applied potential during electrochemical growth is positive of the reduction potential of Bi3+, an initial, Bi-rich seed layer forms. Electron microscopy imaging and diffraction reveal that the seed layer consists of nanocrystals of cubic BiSe embedded within an amorphous matrix of Bi and Se. Using density functional theory calculations, we show that epitaxial matching between cubic BiSe and orthorhombic Bi2Se3 can help stabilize the metastable orthorhombic phase over the thermodynamically stable rhombohedral phase. The spontaneous formation of the seed layer enables us to grow orthorhombic Bi2Se3 on a variety of substrates including single-crystal silicon with different orientations, polycrystalline fluorine -doped tin oxide, and polycrystalline gold. The ability to stabilize the metastable phase through room-temperature electrodeposition in aqueous solution without requiring a single-crystal substrate broadens the range of applications for this semiconductor in optoelectronic and electrochemical devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available