4.4 Article

A new approach for structural damage detection exploring the singular spectrum analysis

Journal

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X16667549

Keywords

Structural health monitoring; time series analysis; residues; statistical signal processing; principal component analysis; lead zirconate titanate

Funding

  1. CNPq, Brazilian Research Agency [248665/2013-8, 306207/2013-3]
  2. University of Michigan through the Kelly Johnson Collegiate Chair Fund

Ask authors/readers for more resources

This article presents a novel approach for damage detection applied to structural health monitoring systems exploring the residues obtained from singular spectrum analysis. In this technique, a lead zirconate titanate patch acting as actuator excites the structure, and three other patches are used as sensors to receive the structural responses. This method is based on a high-frequency excitation range in order to overcome the problem caused when the low-vibration modes are excited. In this method, a wideband chirp signal, with low amplitude and variable frequency, is used to excite the structure. The response signals are acquired in the time domain, and the singular spectrum analysis procedure is performed. The residues obtained between the reconstructed and original time series are used to compute statistical metrics. The residues calculated from singular spectrum analysis are used to compute the root mean square deviation and correlation coefficient deviation metric indices, rendering the damage detection approach more reliable. Tests were carried out on an aluminum plate, and the results have demonstrated the effectiveness of the proposed method making it an excellent approach for structural health monitoring applications. The results exploring different numbers of components used during the reconstruction process of time series are obtained, and the highlights are presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available