4.5 Article

Characterization of Gastrointestinal Hormone Dysfunction and Metabolic Pathophysiology in Experimental Spinal Cord Injury

Journal

JOURNAL OF NEUROTRAUMA
Volume 40, Issue 9-10, Pages 981-998

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/neu.2021.0490

Keywords

metabolism; secondary insult; spinal cord injury

Ask authors/readers for more resources

Cardiometabolic disease is a common complication of spinal cord injury (SCI), but the underlying mechanisms are not well defined. This study suggests that SCI may disrupt the gastrointestinal system and contribute to dysregulation of energy metabolism, increasing the risk factors for cardiovascular disease.
Cardiometabolic disease is a leading complication of spinal cord injury (SCI) that contributes to premature all-cause cardiovascular morbidity and early death. Despite widespread reports that cardioendocrine disorders are more prevalent in individuals with SCI than those without disability, a well-defined pathophysiology has not been established. Autonomic dysfunction accompanying disruption of autonomic spinal tracts may contribute to dysregulation of energy metabolism via uncoupling of integrated hunger and satiation signals. In governing human feeding behaviors, these signals are controlled by a network of enteroendocrine cells that line the gastrointestinal (GI) tract. These cells regulate GI peptide release and autonomic systems that maintain direct neuroendocrine communication between the GI tract and appetite circuitry of the hypothalamus and brainstem. Here we investigate gene-expression and physiological changes in GI peptides and hormones, as well as changes in physiological response to feeding, glucose and insulin challenge, and evaluate GI tissue cytoarchitecture after experimental SCI. Adult female mice (C57BL/6) were subjected to a severe SCI (65 kDyne) at T9, and a sham control group received laminectomy only. The SCI results in chronic elevation of fasting plasma glucose levels and an exaggerated glucose response after an oral glucose and insulin tolerance test. Mice with SCI also exhibit significant alteration in gut hormone genes, plasma levels, physiological response to prandial challenge, and cell loss and gross tissue damage in the gut. These findings demonstrate that SCI has widespread effects on the GI system contributing to component cardiometabolic disease risk factors and may inform future therapeutic and rehabilitation strategies in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available