4.3 Article

Early Divergence of the C-Terminal Variable Region of Troponin T Via a Pair of Mutually Exclusive Alternatively Spliced Exons Followed by a Selective Fixation in Vertebrate Heart

Journal

JOURNAL OF MOLECULAR EVOLUTION
Volume 90, Issue 6, Pages 452-467

Publisher

SPRINGER
DOI: 10.1007/s00239-022-10075-z

Keywords

C-terminal variable region of troponin T; Divergence of striated muscles; Molecular evolution; Selective fixation of alternative exons

Funding

  1. National Institutes of Health [HL127691, HL138007]

Ask authors/readers for more resources

Troponin T (TnT) is a key component of the troponin complex involved in regulating muscle contraction. It has evolved through alternative splicing to generate isoforms with muscle type-specific functions. The C-terminal region of TnT has a variable splicing segment that interfaces with other subunits and is important for its function. The evolution of TnT isoforms is associated with functional differences in muscle contraction.
Troponin T (TnT) is the thin filament anchoring subunit of troponin complex and plays an organizer role in the Ca2+-regulation of striated muscle contraction. From an ancestral gene emerged similar to 700 million years ago in Bilateria, three homologous genes have evolved in vertebrates to encode muscle type-specific isoforms of TnT. Alternative splicing variants of TnT are present in vertebrate and invertebrate muscles to add functional diversity. While the C-terminal region of TnT is largely conserved, it contains an alternatively spliced segment emerged early in C. elegans, which has evolved into a pair of mutually exclusive exons in arthropods (10A and 10B of Drosophila TpnT gene) and vertebrates (16 and 17 of fast skeletal muscle Tnnt3 gene). The C-terminal alternatively spliced segment of TnT interfaces with the other two subunits of troponin with functional significance. The vertebrate cardiac TnT gene that emerged from duplication of the fast TnT gene has eliminated this alternative splicing by the fixation of an exon 17-like constitutive exon, indicating a functional value in slower and rhythmic contractions. The vertebrate slow skeletal muscle TnT gene that emerged from duplication of the cardiac TnT gene has the exon 17-like structure conserved, indicating its further function in sustained and fatigue resistant contractions. This functionality-based evolution is consistent with the finding that exon 10B-encoded segment of Drosophila TnT homologous to the exon 17-encoded segment of vertebrate fast TnT is selectively expressed in insect heart and leg muscles. The evolution of the C-terminal variable region of TnT demonstrates a submolecular mechanism in modifying striated muscle contractility and for the treatment of muscle and heart diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available